

w0

i\

< -

|
— A

N\
o

'\ul --._.-.‘. -
i E‘-‘i

e — —
L

=
'IEE
reE——

complexity

Two types of complexity

e accidental
e essential

No Silver Bullet - Essence and Accident in Software Engineering

Clean Architecture

1. Independence of frameworks
2. Testability
3. Independence of Ul or database

Clean Architecture

Separates complexity of your code

Project: Auctions online

User stories

e As a bidder | want to make a bid to win an auction

e As a bidder | want to be notified by e-mail when my bid is a
winning one

e As an administrator | want to be able to withdraw a bid

Django + Rest Framework!

DB

Migrations |

AdminPanel

Views

ModelForms Serializers
Models <«—

DjangoORM

User stories -» code

e As a bidder | want to make a bid to win an auction

e As a bidder | want to be notified by e-mail when my bid is a
winning one

e As an administrator | want to be able to withdraw a bid

Models first

class Auction(models.Model):
title = models.CharField(...)
initial price = models.DecimalField(...)
current price = models.DecimalField(...)

class Bid(models.Model):
amount = models.DecimalField(...)
bidder = models.ForeignKey(...)
auction = models.ForeignKey(Auction, on delete=PROTECT)

User stories

e As an administrator | want to be able to withdraw a bid

Django administration

WELCOME, USER2. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home > Auctions > Auctions » Example 1

Change auction

Title: Example 1
Initial price: 15 c
Current price: 31.00
L
AMOUNT BIDDER DELETE?
30.00 user] J
31.00 user2 L

Save and add another Save and continue editing SAVE

def save related(self, request, form, formsets, *args, **kwargs):
ids of deleted bids = self. get ids of deleted bids(formsets)
bids to withdraw = Bid.objects.filter(
in=ids of deleted bids)

auction = form.instance

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

super().save related(request, form, formsets, *args, **kwarg

def save related(self, request, form, formsets, *args, **kwargs):
ids of deleted bids = self. get ids of deleted bids(formsets)
bids to withdraw = Bid.objects.filter(
pk in=ids_ of deleted bids)

self. notify winners(new winners - old winners)

super().save related(request, form, formsets, *args, **kwarg

def save related(self, request, form, formsets, *args, **kwargs):
ids of deleted bids = self. get ids of deleted bids(formsets)
bids to withdraw = Bid.objects.filter(
pk in=ids_ of deleted bids)

auction = form.instance

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

super().save related(request, form, formsets, *args, **kwarg

Clean Arch - building block #1

class WithdrawingBid:
def withdraw bids(self, auction id, bids ids):
auction = Auction.objects.get(pk=auction id)
bids to withdraw = Bid.objects.filter(
pk in=ids of deleted bids)

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

UseCase OR Interactor

= 75

)

‘

estrates a par{ cu lai’ pr¢; ss

What about tests?!

Business logic is coupled with a framework, so are tests...

Testing through views

from django.test import TestCase

class LoginTestCase(TestCase):

def test login(self):

User.objects.create(...)
response = self.client.get('/dashboard/")

self.assertRedirects(response, '/accounts/login/')

How much time wasted, exactly?

[m]t

https://breadcrumbscollector.tech/is-your-test-suite-wasting-your-time/

How a textbook example looks like?

class MyTest(unittest.TestCase):
def test add(self):
expected = 7

actual = add(3, 4)

self.assertEqual (actual, expected)

No side effects and dependencies makes code easier to test
PURE FUNCTION

Getting rid of dependencies: find them

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):
auction = Auction.objects.get(pk=auction id)
bids to withdraw = Bid.objects.filter(
in=ids of deleted bids)

old winners = set(auction.winners)
auction.withdraw bids(bids to withdraw)
new winners = set(auction.winners)

self. notify winners(new winners - old winners)

Getting rid of dependencies: hide them

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):

old winners = set(auction.winners)
auction.withdraw bids(bids)
new winners = set(auction.winners)

self.auctions repository.save(auction)

self.bids repository.save(bid)

self. notify winners(new winners - old winners)

Getting rid of dependencies: hide them

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):

Cibleih el - UEauctions repository.get(auction id)
bids = self.bids repository.get by ids(bids ids)

old winners = set(auction.winners)
auction.withdraw bids(bids)
new winners = set(auction.winners)

SARauctions repository.save(auction)
for bid in bids:

self.bids repository.save(bid)

self. notify winners(new winners - old winners)

Clean Arch - building block #2

class AuctionsRepo(metaclass=ABCMeta):

@abstractmethod
def get(self, auction id):

pass

@abstractmethod
def save(self, auction):
pass

Interface / Port

P payPal (3 Square

. UE
Authorize.Net . b
<j wepay
a'-'!' L stripe
amazon pady

2CHECKOUT

r 7=
A
7
/5 \
N
g\\

Clean Arch - building block #2

class AuctionsRepo(metaclass=ABCMeta):

@abstractmethod
def get(self, auction id):

pass

@abstractmethod
def save(self, auction):
pass

Interface / Port

Clean Arch - building block #3

class DjangoAuctionsRepo(AuctionsRepo):

def get(self, auction id):
return Auction.objects.get (pk=auction id)

Interface Adapter / Adapter

Combine together

class WithdrawingBidUseCase:
def init (self, auctions repository: AuctionsRepo):
self.auctions repository = auctions repository

django adapter = DjangoAuctionsRepo()
withdrawing bid uc = WithdrawingBidUseCase(django adapter)

Dependency Injection

import inject

def configure inject(binder: inject.Binder):
binder.bind(AuctionsRepo, DjangoAuctionsRepo())

inject.configure once(configure inject)

class WithdrawingBidUseCase:

auctions repo: AuctionsRepo = inject.attr (AuctionsRepo)

Benefits from another layer

It is easier to reason about logic
It is possible to write TRUE unit tests
Work can be parallelized

Decision making can be deferred
OOP done right

Our logic is still coupled to a database!

class WithdrawingBidUseCase:
def withdraw bids(self, auction id, bids ids):
auction = self.auctions repository.get(auction id)
bids = self.bids repository.get by ids(bids ids)

old winners = set(auction.winners)

auction.withdraw bids(bids)

new winners = set(auction.winners)

self.auctions repository.save(auction)
for bid in bids:

self.bids repository.save(bid)

self. notify winners(new winners - old winners)

Clean Arch - building block #0

class Auction:
def init (self, id: int, title: str, bids: List[Bid]):
self.id = id
self.title = title
self.bids = bids

def withdraw bids(self, bids: List[Bid]):

def make a bid(self, bid: Bid):

@property
def winners(self):

Entity

Clean Arch - building block #3

class DjangoAuctionsRepo(AuctionsRepo):
def get(self, auction id: int) -> Auction:
auction model = AuctionModel.objects.prefetch related(
'bids’
) .get (pk=auction id)

bids = |
self. bid from model(bid model)
for bid model in auction model.bids.all()

]

return Auction(
auction model.id,
auction model.title,
bids

Interface Adapter / Adapter

Entity vs model #1

auction = Auction(id=1, title='Super auction', bids=[])

auction.bids.append(Bid()) X

auction.make a bid(Bid()) V

Entity = data & rules - adhere to Tell, don't ask principle

Entity vs model #2

Entity can represent graph of objects

Clean Aﬁﬁ'ﬁ% tl&;uilding blocks altogether

nterface / Port

nterface Adapter / Adapter
Use Case / Interactor
Presenter”®

+ space for more

*see exemplary project

Clean Arch building blocks altogether

Domain

Entities & friegnds

Clean Arch building blocks altogether

s "Fﬁppl ication

UseCases, interfaces

. — Domain

Entities & friends

Clean Arch building blocks altogether

Infrastructure

interfaces adapters

2 "ﬁpplicatiuﬁ' >

UseCases, inlerfaces 5,

—» — Domain

Entities & friends

Clean Arch building blocks altogether

External '
- world
N .
) .
S 4 N
/ Q@@@& Infrastructure &
) E;-‘-.a’ interfaces adapters "-'-'.q._ :
-~ Application -
; UseCases, interfaces X,
> > » Domain
| Entities & friends f
< =
=,
2 S
S, %)

You MUST NOT use/import anything from a layer above!

Clean Arch bu:ldmg blocks altogether

External
- world _
4 g
P S
= 4
/ Q@*-"@‘F Infrastructure &
Y é-‘-.a’ interfaces adapters %
Application
UseCases, inlerfaces
| > » Domain
Entities & friends
<
(=)
S a
6¢)

Boundary

What to be careful of?

non-idiomatic framework use

Word on frameworks

Pyramid
-lask
Django*

*if you like pain

® o ©o
L SR

more code (type hints help)

copying data between objects

validation?

DRF serializers, colander, marshmallow,
typechecking

value objects

money = Decimal('10.00') # meh

value objects

= Money('10.00012') # raises ValueError

= Money('10.12$') # yay!

overengineering

When it pays off?

lots of cases - testability

Testing entities

def test should use initial price as current price when no bids()
auction = create auction()

assert auction.current price == auction.initial price

def test should return highest bid amount for current price():
auction = create auction(bids=]
Bid(id=1], bidder id=1, amount=Decimal('20')),
Bid(id=2, bidder id=2, amount=Decimal('15')),
)

assert auction.current price == Decimal('20")

Testing use cases

def test saves auction(
auctions repo mock: Mock,
auction mock: Mock,
input dto: PlacingBidInputDto

) => None:
PlacingBidUseCase() .execute(input dto)

auctions repo mock.save.assert called once with(auction mock)

deferring decision making - stay lean

complicated domain

Futher reading

https:/8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
Clean Architecture: A Craftsman's Guide to Software Structure and Design
Clean Architecture Python (web) apps - Przemek Lewandowski
Software architecture chronicles - blog posts series
Boundaries - Gary Bernhardt
Exemplary project in PHP (blog post)
Exemplary project in PHP (repo)
Exemplary project in C# (repo)
Exemplary project in Python (repo)

Czysta Architektura: Jak stworzy¢ testowalny i elastyczny kod (justjoin.it)

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://www.amazon.de/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164
http://slides.com/haxoza/clean-architecture-python#/
https://herbertograca.com/2017/07/03/the-software-architecture-chronicles/
https://www.destroyallsoftware.com/talks/boundaries
https://www.entropywins.wtf/blog/2016/11/24/implementing-the-clean-architecture/
https://github.com/wmde/FundraisingFrontend
https://github.com/matthewrenze/clean-architecture-demo.git
https://github.com/Enforcer/clean-architecture-example-1
https://geek.justjoin.it/czysta-architektura-pythonie-stworzyc-testowalny-elastyczny-kod/

«<shameless plug»
I'm writing a book!
cleanarchitecture.io

¢</shameless plug»

https://cleanarchitecture.io/

That's all, folks!

Questions?

STY.NexT | breadcrumbscollector.tech | @EnforcerPL

https://cleanarchitecture.io/talk
https://breadcrumbscollector.tech/
https://twitter.com/EnforcerPL

